

Welcome to work-tracker’s documentation!

User Documentation:

	work-tracker
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2018-12-09)

Developer Documentation:

	Inner workings
	Database Functionality

	GUI Functionality

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

Indices and tables

	Index

	Module Index

	Search Page

work-tracker

[image: Actions Status]
 [https://github.com/s-weigand/work-tracker/actions][image: Documentation Status]
 [https://work-tracker.readthedocs.io/en/latest/?badge=latest][image: Codevove]
 [https://codecov.io/gh/s-weigand/work-tracker]Simple tool to keep track of your work time and/or productivity

	Free software: Apache Software License 2.0

	Documentation: https://work-tracker.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install work-tracker, run this command in your terminal:

$ pip install work_tracker

This is the preferred method to install work-tracker, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io/en/stable/] installed, this Python installation guide [https://docs.python-guide.org/starting/installation/] can guide
you through the process.

From sources

The sources for work-tracker can be downloaded from the Github repo [https://github.com/s-weigand/work-tracker].

You can either clone the public repository:

$ git clone git://github.com/s-weigand/work-tracker

Or download the tarball [https://github.com/s-weigand/work-tracker/tarball/master]:

$ curl -OL https://github.com/s-weigand/work-tracker/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use work-tracker in a project:

import work_tracker

Credits

Development Lead

	Sebastian Weigand <s.weigand.phy@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2018-12-09)

	First release on PyPI.

Inner workings

For Developers:

	Database Functionality
	base_classes

	calc_worktime

	helpfer_functions

	update_work_db

	GUI Functionality
	work_tracker.UI_files.worktracker_main

Database Functionality

	base_classes

	Module containing the baseclass for data interactions.

	calc_worktime

	Module containing the Worktime calculator class.

	helpfer_functions

	Module containing helper functions.

	update_work_db

	Module containing Database interaction class.

base_classes

Module containing the baseclass for data interactions.

Classes

Summary

	DbBaseClass

	Baseclass for data interactions.

DbBaseClass

	
class DbBaseClass(user_config_path='.user_config.ini')

	Baseclass for data interactions.

	Parameters

	user_config_path (str, optional) – Path to the user specific config, which will overwrite default settings.
by default “.user_config.ini”

Attributes Summary

	default_config_path

	

Methods Summary

	calc_file_hashes

	Calculate hashvalues for files.

	clean_db

	Remove rows where the session work was less than 1min.

	get_datetime_now

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	get_pandas_now

	Return datetime.now as pd.Timestamp.

	get_remote_db

	Download the db_file to db_path_online from the SFTP server.

	load_config

	Load the config files and sets all necessary properties.

	load_db

	Read in the db file if it exists or creates a new one.

	merge_dbs

	Merge local db with remote db.

	push_remote_db

	Push the db_file from db_path_offline to the SFTP server.

Methods Documentation

	
calc_file_hashes() → DataFrame

	Calculate hashvalues for files.

	Returns

	Dataframe with file hashes.

	Return type

	pd.DataFrame

	
clean_db() → None

	Remove rows where the session work was less than 1min.

	
get_datetime_now() → datetime

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	Returns

	datetime.now()

	Return type

	datetime.datetime

	
get_pandas_now() → Timestamp

	Return datetime.now as pd.Timestamp.

	Returns

	current time as timestamp: pd.Timestamp

	Return type

	pd.Timestamp

	
get_remote_db() → bool

	Download the db_file to db_path_online from the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database retrieval succeeded or not.

	Return type

	bool

	
load_config() → ConfigParser

	Load the config files and sets all necessary properties.

	
load_db(db_path: str) → DataFrame

	Read in the db file if it exists or creates a new one.

	Parameters

	db_path (str) – path to the db_file on the SFTP server

	Returns

	Loaded database.

	Return type

	pd.Dataframe

	
merge_dbs() → DataFrame

	Merge local db with remote db.

The overlap (same start) is replaced with the max value of end.

	Returns

	Local db merged with remote db, with striped overlap.

	Return type

	pd.Dataframe

	
push_remote_db() → bool

	Push the db_file from db_path_offline to the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database upload succeeded or not.

	Return type

	bool

calc_file_hashes

	
DbBaseClass.calc_file_hashes() → DataFrame

	Calculate hashvalues for files.

	Returns

	Dataframe with file hashes.

	Return type

	pd.DataFrame

clean_db

	
DbBaseClass.clean_db() → None

	Remove rows where the session work was less than 1min.

get_datetime_now

	
DbBaseClass.get_datetime_now() → datetime

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	Returns

	datetime.now()

	Return type

	datetime.datetime

get_pandas_now

	
DbBaseClass.get_pandas_now() → Timestamp

	Return datetime.now as pd.Timestamp.

	Returns

	current time as timestamp: pd.Timestamp

	Return type

	pd.Timestamp

get_remote_db

	
DbBaseClass.get_remote_db() → bool

	Download the db_file to db_path_online from the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database retrieval succeeded or not.

	Return type

	bool

load_config

	
DbBaseClass.load_config() → ConfigParser

	Load the config files and sets all necessary properties.

load_db

	
DbBaseClass.load_db(db_path: str) → DataFrame

	Read in the db file if it exists or creates a new one.

	Parameters

	db_path (str) – path to the db_file on the SFTP server

	Returns

	Loaded database.

	Return type

	pd.Dataframe

merge_dbs

	
DbBaseClass.merge_dbs() → DataFrame

	Merge local db with remote db.

The overlap (same start) is replaced with the max value of end.

	Returns

	Local db merged with remote db, with striped overlap.

	Return type

	pd.Dataframe

push_remote_db

	
DbBaseClass.push_remote_db() → bool

	Push the db_file from db_path_offline to the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database upload succeeded or not.

	Return type

	bool

calc_worktime

Module containing the Worktime calculator class.

Classes

Summary

	WorktimeCalculator

	Class to calculate the worktime.

WorktimeCalculator

	
class WorktimeCalculator(user_config_path='.user_config.ini')

	Class to calculate the worktime.

	Parameters

	user_config_path (str, optional) – Path to the user specific config, which will overwrite default settings.
by default “.user_config.ini”

Attributes Summary

	default_config_path

	

Methods Summary

	add_time_columns

	Add Year, Month, Week and Day columns to an existing Dataframe.

	calc_file_hashes

	Calculate hashvalues for files.

	clean_db

	Remove rows where the session work was less than 1min.

	generate_contract_worktime_df

	Generate a Dataframe with 'worktime' column.

	get_daily_worktime

	Calculate the mean daily work time based on the contract details.

	get_datetime_now

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	get_holiday_df

	Generate a Dataframe containing all needed holidays.

	get_manual_df_with_workime

	Read the manual_db file.

	get_pandas_now

	Return datetime.now as pd.Timestamp.

	get_plot_df

	Return a Dataframe prepared for plotting.

	get_remote_db

	Download the db_file to db_path_online from the SFTP server.

	get_total_df

	Calculate total Dataframe.

	init_holidays

	Initialize the holidays with the custom holidays from the config.

	load_config

	Load the config files and sets all necessary properties.

	load_db

	Load Database remote or locally.

	merge_dbs

	Merge local db with remote db.

	push_remote_db

	Push the db_file from db_path_offline to the SFTP server.

	split_date_overlap_session

	Split sessions which contain midnight to to sessions.

Methods Documentation

	
classmethod add_time_columns(df: DataFrame, date_time_column_name: str = 'start') → DataFrame

	Add Year, Month, Week and Day columns to an existing Dataframe.

	Parameters

	
	df (pd.DataFrame) – Dataframe the columns should be added to.

	date_time_column (str) – Name of the column containing the used date

	Returns

	Dataframe with added Year, Month, Week and Day columns.

	Return type

	pd.DataFrame

	
calc_file_hashes() → DataFrame

	Calculate hashvalues for files.

	Returns

	Dataframe with file hashes.

	Return type

	pd.DataFrame

	
clean_db() → None

	Remove rows where the session work was less than 1min.

	
generate_contract_worktime_df() → DataFrame

	Generate a Dataframe with ‘worktime’ column.

Generate a template like DataFrame containing the mean daily work time for each day
counting as workday based on the contract details. This Template will be used later on
to generate the manual_df and holiday_df.

	Returns

	contract_worktime_df – Dataframe containing all workdays and their mean daily working time,
since the 1st contract started until now

	Return type

	pandas.DataFrame

	
get_daily_worktime(frequenzy: str, worktime: Union[int, float], weekmask: str) → float

	Calculate the mean daily work time based on the contract details.

	Parameters

	
	frequenzy (str) – Timeperiod in which the the user is supposed to to work worktime*1h
Supported values are: monthly, weekly

	worktime (int, float) – Time in hours that the user is supposed to work in frequenzy

	weekmask (str) – Listing of the abbreviated weekdays the user is supposed to work
i.e.: “Mon Tue Wed Thu Fri Sat”

	Returns

	daily_worktime

	Return type

	float

	
get_datetime_now() → datetime

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	Returns

	datetime.now()

	Return type

	datetime.datetime

	
get_holiday_df() → DataFrame

	Generate a Dataframe containing all needed holidays.

They begin at the start of the first contract until now,
as well as work time based on the contract parameters for those days.

	Returns

	holiday_df – Dataframe containing all holidays from the start of the
first contract until now, as well as work time based on
the contract parameters for those days.

	Return type

	pandas.DataFrame

	
get_manual_df_with_workime() → DataFrame

	Read the manual_db file.

That file contains information like sick time | vacation,
specified by manual_db in the config.
Then expands the given time periods to date_ranges on a daily base, drops the none
workdays and adds the daily work time based on the contract parameters for that day.

	Returns

	Dataframe containing the to a daily base expanded entry’s of manual_df.

	Return type

	pandas.DataFrame

	
get_pandas_now() → Timestamp

	Return datetime.now as pd.Timestamp.

	Returns

	current time as timestamp: pd.Timestamp

	Return type

	pd.Timestamp

	
get_plot_df(rule='D', date_time_column='start') → DataFrame

	Return a Dataframe prepared for plotting.

Dataframe with a DateTimeIndex, columns named by occupation and
containing the worked time of that occupation for the given samplingrate

	Parameters

	rule (str) – Resampling rule see pandas.DataFrame.resample

	Returns

	Dataframe with a DateDimeIndex, columns named by occupation and
containing the worktime of that occupation for the samplingrate

	Return type

	pandas.DataFrame

	
get_remote_db() → bool

	Download the db_file to db_path_online from the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database retrieval succeeded or not.

	Return type

	bool

	
get_total_df() → DataFrame

	Calculate total Dataframe.

	Returns

	Dataframe with ‘worktime’ and time columns

	Return type

	pd.DataFrame

See also

add_time_columns

	
init_holidays() → Union[HolidayBase, Dict]

	Initialize the holidays with the custom holidays from the config.

Returns the class instance from holiday, which matches the country and province
given in the config and updates it with the special holidays, also given in the config

	Returns

	HolidayBase object for the given country and province or an empty dict.

	Return type

	Union[HolidayBase, Dict]

	
load_config()

	Load the config files and sets all necessary properties.

	
load_db() → DataFrame

	Load Database remote or locally.

Tries to load the database directly from the server if possible, else
it loads the local database or throws an exception that isn’t possible either.

	Returns

	db – Database with the actually worked time

	Return type

	pandas.DataFrame

	
merge_dbs() → DataFrame

	Merge local db with remote db.

The overlap (same start) is replaced with the max value of end.

	Returns

	Local db merged with remote db, with striped overlap.

	Return type

	pd.Dataframe

	
push_remote_db() → bool

	Push the db_file from db_path_offline to the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database upload succeeded or not.

	Return type

	bool

	
split_date_overlap_session() → None

	Split sessions which contain midnight to to sessions.

The first lasting until midnight and the second starting at midnight.

df before:
start end
1.1.1970 21:00:00 2.1.1970 02:00:00

df after:
start end
1.1.1970 21:00:00 2.1.1970 00:00:00
2.1.1970 00:00:00 2.1.1970 02:00:00

add_time_columns

	
classmethod WorktimeCalculator.add_time_columns(df: DataFrame, date_time_column_name: str = 'start') → DataFrame

	Add Year, Month, Week and Day columns to an existing Dataframe.

	Parameters

	
	df (pd.DataFrame) – Dataframe the columns should be added to.

	date_time_column (str) – Name of the column containing the used date

	Returns

	Dataframe with added Year, Month, Week and Day columns.

	Return type

	pd.DataFrame

calc_file_hashes

	
WorktimeCalculator.calc_file_hashes() → DataFrame

	Calculate hashvalues for files.

	Returns

	Dataframe with file hashes.

	Return type

	pd.DataFrame

clean_db

	
WorktimeCalculator.clean_db() → None

	Remove rows where the session work was less than 1min.

generate_contract_worktime_df

	
WorktimeCalculator.generate_contract_worktime_df() → DataFrame

	Generate a Dataframe with ‘worktime’ column.

Generate a template like DataFrame containing the mean daily work time for each day
counting as workday based on the contract details. This Template will be used later on
to generate the manual_df and holiday_df.

	Returns

	contract_worktime_df – Dataframe containing all workdays and their mean daily working time,
since the 1st contract started until now

	Return type

	pandas.DataFrame

get_daily_worktime

	
WorktimeCalculator.get_daily_worktime(frequenzy: str, worktime: Union[int, float], weekmask: str) → float

	Calculate the mean daily work time based on the contract details.

	Parameters

	
	frequenzy (str) – Timeperiod in which the the user is supposed to to work worktime*1h
Supported values are: monthly, weekly

	worktime (int, float) – Time in hours that the user is supposed to work in frequenzy

	weekmask (str) – Listing of the abbreviated weekdays the user is supposed to work
i.e.: “Mon Tue Wed Thu Fri Sat”

	Returns

	daily_worktime

	Return type

	float

get_datetime_now

	
WorktimeCalculator.get_datetime_now() → datetime

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	Returns

	datetime.now()

	Return type

	datetime.datetime

get_holiday_df

	
WorktimeCalculator.get_holiday_df() → DataFrame

	Generate a Dataframe containing all needed holidays.

They begin at the start of the first contract until now,
as well as work time based on the contract parameters for those days.

	Returns

	holiday_df – Dataframe containing all holidays from the start of the
first contract until now, as well as work time based on
the contract parameters for those days.

	Return type

	pandas.DataFrame

get_manual_df_with_workime

	
WorktimeCalculator.get_manual_df_with_workime() → DataFrame

	Read the manual_db file.

That file contains information like sick time | vacation,
specified by manual_db in the config.
Then expands the given time periods to date_ranges on a daily base, drops the none
workdays and adds the daily work time based on the contract parameters for that day.

	Returns

	Dataframe containing the to a daily base expanded entry’s of manual_df.

	Return type

	pandas.DataFrame

get_pandas_now

	
WorktimeCalculator.get_pandas_now() → Timestamp

	Return datetime.now as pd.Timestamp.

	Returns

	current time as timestamp: pd.Timestamp

	Return type

	pd.Timestamp

get_plot_df

	
WorktimeCalculator.get_plot_df(rule='D', date_time_column='start') → DataFrame

	Return a Dataframe prepared for plotting.

Dataframe with a DateTimeIndex, columns named by occupation and
containing the worked time of that occupation for the given samplingrate

	Parameters

	rule (str) – Resampling rule see pandas.DataFrame.resample

	Returns

	Dataframe with a DateDimeIndex, columns named by occupation and
containing the worktime of that occupation for the samplingrate

	Return type

	pandas.DataFrame

get_remote_db

	
WorktimeCalculator.get_remote_db() → bool

	Download the db_file to db_path_online from the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database retrieval succeeded or not.

	Return type

	bool

get_total_df

	
WorktimeCalculator.get_total_df() → DataFrame

	Calculate total Dataframe.

	Returns

	Dataframe with ‘worktime’ and time columns

	Return type

	pd.DataFrame

See also

add_time_columns

init_holidays

	
WorktimeCalculator.init_holidays() → Union[HolidayBase, Dict]

	Initialize the holidays with the custom holidays from the config.

Returns the class instance from holiday, which matches the country and province
given in the config and updates it with the special holidays, also given in the config

	Returns

	HolidayBase object for the given country and province or an empty dict.

	Return type

	Union[HolidayBase, Dict]

load_config

	
WorktimeCalculator.load_config()

	Load the config files and sets all necessary properties.

load_db

	
WorktimeCalculator.load_db() → DataFrame

	Load Database remote or locally.

Tries to load the database directly from the server if possible, else
it loads the local database or throws an exception that isn’t possible either.

	Returns

	db – Database with the actually worked time

	Return type

	pandas.DataFrame

merge_dbs

	
WorktimeCalculator.merge_dbs() → DataFrame

	Merge local db with remote db.

The overlap (same start) is replaced with the max value of end.

	Returns

	Local db merged with remote db, with striped overlap.

	Return type

	pd.Dataframe

push_remote_db

	
WorktimeCalculator.push_remote_db() → bool

	Push the db_file from db_path_offline to the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database upload succeeded or not.

	Return type

	bool

split_date_overlap_session

	
WorktimeCalculator.split_date_overlap_session() → None

	Split sessions which contain midnight to to sessions.

The first lasting until midnight and the second starting at midnight.

df before:
start end
1.1.1970 21:00:00 2.1.1970 02:00:00

df after:
start end
1.1.1970 21:00:00 2.1.1970 00:00:00
2.1.1970 00:00:00 2.1.1970 02:00:00

helpfer_functions

Module containing helper functions.

Functions

Summary

	debug_printer

	Print variable names and their values.

	get_abs_path

	Helperfunction to get the absolute path in respect to the main file ("work_tracker.pyw").

	get_midnight_datetime

	Helperfunction to get the date at exactly midnight for a given datetime object.

	hash_file

	Calculate the md5 hash value of the file at file_path.

	seconds_to_hm

	Helperfunction to convert Number of seconds to hour:minute format.

	str_datetime

	Convert a string in Datetime64[ns] format to a datetime object.

debug_printer

	
debug_printer(arg)

	Print variable names and their values.

Convenience function to print variables in a matter that they are easily seen
and their name as well as their value is printed.

	Parameters

	arg (anything) –

get_abs_path

	
get_abs_path(rel_path)

	Helperfunction to get the absolute path in respect to the main file (“work_tracker.pyw”).

	Parameters

	rel_path (str) – relative path to a file

	Returns

	absolute path – absolute path evaluated from the relative path in respect to
the path of the main file(“work_tracker.pyw”)

	Return type

	str

get_midnight_datetime

	
get_midnight_datetime(datetime_obj: datetime)

	Helperfunction to get the date at exactly midnight for a given datetime object.

	Parameters

	datetime.datetime – datetime object containing a date

	Returns

	String representing the seconds which where passed as %h:%M

	Return type

	datetime.datetime

hash_file

	
hash_file(file_path: str) → Optional[str]

	Calculate the md5 hash value of the file at file_path.

	Parameters

	file_path (str) – Path to the file that should be hashed.

	Returns

	MD5 hex hash value of the file at file_path.

	Return type

	str

seconds_to_hm

	
seconds_to_hm(seconds: int) → str

	Helperfunction to convert Number of seconds to hour:minute format.

	Parameters

	seconds (int) – Amount of seconds that should be converted to an %h:%M string

	Returns

	String representing of seconds, in the form of %h:%M

	Return type

	str

str_datetime

	
str_datetime(time_str: str)

	Convert a string in Datetime64[ns] format to a datetime object.

	Parameters

	time_str (str) – string representing the datetime

	Returns

	datetime which was represented by time_str

	Return type

	datetime

update_work_db

Module containing Database interaction class.

Classes

Summary

	DbInteraction

	Class for data interactions.

DbInteraction

	
class DbInteraction(user_config_path='.user_config.ini')

	Class for data interactions.

	Parameters

	user_config_path (str, optional) – Path to the user specific config, which will overwrite default settings.
by default “.user_config.ini”

Attributes Summary

	default_config_path

	

Methods Summary

	calc_file_hashes

	Calculate hashvalues for files.

	change_occupation

	Change value of self.occupation.

	clean_db

	Remove rows where the session work was less than 1min.

	get_datetime_now

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	get_pandas_now

	Return datetime.now as pd.Timestamp.

	get_remote_db

	Download the db_file to db_path_online from the SFTP server.

	get_session_time

	Calculate the current session time in hours and minutes.

	get_start_time

	Return todays startime in hours and minutes.

	get_today

	Return datetime object for today at midnight.

	load_config

	Load the config files and sets all necessary properties.

	load_db

	Read in the db file if it exists or creates a new one.

	merge_dbs

	Merge local db with remote db.

	push_remote_db

	Push the db_file from db_path_offline to the SFTP server.

	start_session

	Start a session and update database.

	update_db_locale

	Update local database.

	update_now_and_tomorrow

	Update the instance variables yesterday, today and tomorrow.

Methods Documentation

	
calc_file_hashes() → DataFrame

	Calculate hashvalues for files.

	Returns

	Dataframe with file hashes.

	Return type

	pd.DataFrame

	
change_occupation(occupation: str) → None

	Change value of self.occupation.

	Parameters

	occupation (str) – Current occupation.

	
clean_db() → None

	Remove rows where the session work was less than 1min.

	
get_datetime_now() → datetime

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	Returns

	datetime.now()

	Return type

	datetime.datetime

	
get_pandas_now() → Timestamp

	Return datetime.now as pd.Timestamp.

	Returns

	current time as timestamp: pd.Timestamp

	Return type

	pd.Timestamp

	
get_remote_db() → bool

	Download the db_file to db_path_online from the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database retrieval succeeded or not.

	Return type

	bool

	
get_session_time()

	Calculate the current session time in hours and minutes.

	Returns

	String representation in hours and minutes

	Return type

	str

	
get_start_time()

	Return todays startime in hours and minutes.

	Returns

	String representing start time as %h:%M

	Return type

	str

	
get_today()

	Return datetime object for today at midnight.

	Returns

	datetime.datetime.now() but with the hours, minutes, seconds, microseconds set to 0

	Return type

	datetime.datetime

	
load_config() → ConfigParser

	Load the config files and sets all necessary properties.

	
load_db(db_path: str) → DataFrame

	Read in the db file if it exists or creates a new one.

	Parameters

	db_path (str) – path to the db_file on the SFTP server

	Returns

	Loaded database.

	Return type

	pd.Dataframe

	
merge_dbs() → DataFrame

	Merge local db with remote db.

The overlap (same start) is replaced with the max value of end.

	Returns

	Local db merged with remote db, with striped overlap.

	Return type

	pd.Dataframe

	
push_remote_db() → bool

	Push the db_file from db_path_offline to the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database upload succeeded or not.

	Return type

	bool

	
start_session() → None

	Start a session and update database.

	
update_db_locale() → Tuple[str, str]

	Update local database.

	Returns

	start_time and session_time

	Return type

	Tuple[str, str]

	
update_now_and_tomorrow()

	Update the instance variables yesterday, today and tomorrow.

In case the date has changed during the session.
Preventing error in self.update_db_locale, due to a wrong date.

calc_file_hashes

	
DbInteraction.calc_file_hashes() → DataFrame

	Calculate hashvalues for files.

	Returns

	Dataframe with file hashes.

	Return type

	pd.DataFrame

change_occupation

	
DbInteraction.change_occupation(occupation: str) → None

	Change value of self.occupation.

	Parameters

	occupation (str) – Current occupation.

clean_db

	
DbInteraction.clean_db() → None

	Remove rows where the session work was less than 1min.

get_datetime_now

	
DbInteraction.get_datetime_now() → datetime

	Helpermethod for mocking of datetime.datetime.now() in unittests.

	Returns

	datetime.now()

	Return type

	datetime.datetime

get_pandas_now

	
DbInteraction.get_pandas_now() → Timestamp

	Return datetime.now as pd.Timestamp.

	Returns

	current time as timestamp: pd.Timestamp

	Return type

	pd.Timestamp

get_remote_db

	
DbInteraction.get_remote_db() → bool

	Download the db_file to db_path_online from the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database retrieval succeeded or not.

	Return type

	bool

get_session_time

	
DbInteraction.get_session_time()

	Calculate the current session time in hours and minutes.

	Returns

	String representation in hours and minutes

	Return type

	str

get_start_time

	
DbInteraction.get_start_time()

	Return todays startime in hours and minutes.

	Returns

	String representing start time as %h:%M

	Return type

	str

get_today

	
DbInteraction.get_today()

	Return datetime object for today at midnight.

	Returns

	datetime.datetime.now() but with the hours, minutes, seconds, microseconds set to 0

	Return type

	datetime.datetime

load_config

	
DbInteraction.load_config() → ConfigParser

	Load the config files and sets all necessary properties.

load_db

	
DbInteraction.load_db(db_path: str) → DataFrame

	Read in the db file if it exists or creates a new one.

	Parameters

	db_path (str) – path to the db_file on the SFTP server

	Returns

	Loaded database.

	Return type

	pd.Dataframe

merge_dbs

	
DbInteraction.merge_dbs() → DataFrame

	Merge local db with remote db.

The overlap (same start) is replaced with the max value of end.

	Returns

	Local db merged with remote db, with striped overlap.

	Return type

	pd.Dataframe

push_remote_db

	
DbInteraction.push_remote_db() → bool

	Push the db_file from db_path_offline to the SFTP server.

This uses the values specified at [“login”][“db_path”] in the config file.

	Returns

	Whether database upload succeeded or not.

	Return type

	bool

start_session

	
DbInteraction.start_session() → None

	Start a session and update database.

update_db_locale

	
DbInteraction.update_db_locale() → Tuple[str, str]

	Update local database.

	Returns

	start_time and session_time

	Return type

	Tuple[str, str]

update_now_and_tomorrow

	
DbInteraction.update_now_and_tomorrow()

	Update the instance variables yesterday, today and tomorrow.

In case the date has changed during the session.
Preventing error in self.update_db_locale, due to a wrong date.

GUI Functionality

	worktracker_main

	Module containing the main GUI class.

work_tracker.UI_files.worktracker_main

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/s-weigand/work-tracker/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

work-tracker could always use more documentation, whether as part of the
official work-tracker docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/s-weigand/work-tracker/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up work-tracker for local development.

	Fork the work-tracker repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/work_tracker.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv work_tracker
$ cd work_tracker/
$ python -m pip install -c constraints.txt -r requirements_dev.txt

	Install the pre-commit and pre-push hooks

$ pre-commit install && pre-commit install -t pre-push

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7, 3.8, 3.9 and 3.10.
Check https://github.com/s-weigand/work-tracker/actions
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_work_tracker

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 work_tracker	

 	
 	
 work_tracker.functions.base_classes	

 	
 	
 work_tracker.functions.calc_worktime	

 	
 	
 work_tracker.functions.helpfer_functions	

 	
 	
 work_tracker.functions.update_work_db	

Index

 A
 | C
 | D
 | G
 | H
 | I
 | L
 | M
 | P
 | S
 | U
 | W

A

 	
 	add_time_columns() (WorktimeCalculator class method)

C

 	
 	calc_file_hashes() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

 	
 	change_occupation() (DbInteraction method)

 	clean_db() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

D

 	
 	DbBaseClass (class in work_tracker.functions.base_classes)

 	
 	DbInteraction (class in work_tracker.functions.update_work_db)

 	debug_printer() (in module work_tracker.functions.helpfer_functions)

G

 	
 	generate_contract_worktime_df() (WorktimeCalculator method)

 	get_abs_path() (in module work_tracker.functions.helpfer_functions)

 	get_daily_worktime() (WorktimeCalculator method)

 	get_datetime_now() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

 	get_holiday_df() (WorktimeCalculator method)

 	get_manual_df_with_workime() (WorktimeCalculator method)

 	get_midnight_datetime() (in module work_tracker.functions.helpfer_functions)

 	get_pandas_now() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

 	
 	get_plot_df() (WorktimeCalculator method)

 	get_remote_db() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

 	get_session_time() (DbInteraction method)

 	get_start_time() (DbInteraction method)

 	get_today() (DbInteraction method)

 	get_total_df() (WorktimeCalculator method)

H

 	
 	hash_file() (in module work_tracker.functions.helpfer_functions)

I

 	
 	init_holidays() (WorktimeCalculator method)

L

 	
 	load_config() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

 	
 	load_db() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

M

 	
 	merge_dbs() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

 	
 module

 	work_tracker.functions.base_classes

 	work_tracker.functions.calc_worktime

 	work_tracker.functions.helpfer_functions

 	work_tracker.functions.update_work_db

P

 	
 	push_remote_db() (DbBaseClass method)

 	(DbInteraction method)

 	(WorktimeCalculator method)

S

 	
 	seconds_to_hm() (in module work_tracker.functions.helpfer_functions)

 	split_date_overlap_session() (WorktimeCalculator method)

 	
 	start_session() (DbInteraction method)

 	str_datetime() (in module work_tracker.functions.helpfer_functions)

U

 	
 	update_db_locale() (DbInteraction method)

 	
 	update_now_and_tomorrow() (DbInteraction method)

W

 	
 	
 work_tracker.functions.base_classes

 	module

 	
 work_tracker.functions.calc_worktime

 	module

 	
 	
 work_tracker.functions.helpfer_functions

 	module

 	
 work_tracker.functions.update_work_db

 	module

 	WorktimeCalculator (class in work_tracker.functions.calc_worktime)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to work-tracker’s documentation!

 		
 work-tracker

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2018-12-09)

 		
 Inner workings

 		
 Database Functionality

 		
 base_classes

 		
 calc_worktime

 		
 helpfer_functions

 		
 update_work_db

 		
 GUI Functionality

 		
 work_tracker.UI_files.worktracker_main

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

